
Smart Contract Audit Report
for

TheForce.Trade

Version 1.0

Trustlook Blockchain Labs

Email: bd@trustlook.com

TheForce.Trade Smart Contract Audit Report

Project Overview

Project Name TheForce.Trade

Contract codebase N/A

Platform Binance Smart Chain

Language Solidity

Submission Time 2021.04.09

Report Overview

Report ID TBL_20210411_00

Version v1.0

Reviewer Trustlook Blockchain Labs

Starting Time 2021.04.09

Finished Time 2021.04.18

@ Copyright 2021 Trustlook - All rights reserved

TheForce.Trade Smart Contract Audit Report

Disclaimer

Trustlook audit reports do not provide any warranties or guarantees on the vulnerability
free nature of the given smart contracts, nor do they provide any indication of legal
compliance. Trustlook audit process is aiming to reduce the high level risks possibly
implemented in the smart contracts before the issuance of audit reports. Trustlook audit
reports can be used to improve the code quality of smart contracts and are not able to
detect any security issues of smart contracts that will occur in the future. Trustlook audit
reports should not be considered as financial investment advice.

@ Copyright 2021 Trustlook - All rights reserved

TheForce.Trade Smart Contract Audit Report

About Trustlook Blockchain Labs

Trustlook Blockchain Labs is a leading blockchain security team with a goal of security
and vulnerability research on current blockchain ecosystems by offering
industry-leading smart contracts auditing services. Please contact us for more
information at (https://www.trustlook.com/services/smart.html) or Email
(bd@trustlook.com)

Trustlook blockchain laboratory has established a complete system test environment
and methods.

Black-box Testing The tester has no knowledge of the system being
attacked. The goal is to simulate an external hacking or
cyber warfare attack.

White-box Testing Based on the level of the source code, test the control
flow, data flow, nodes, SDK etc. Try to find out the
vulnerabilities and bugs.

Gray-box Testing Use Trustlook customized script tools to do the security
testing of code modules, search for the defects if any
due to improper structure or improper usage of
applications.

@ Copyright 2021 Trustlook - All rights reserved

https://www.trustlook.com/services/smart.html
mailto:bd@trustlook.com

TheForce.Trade Smart Contract Audit Report

Introduction

By reviewing the implementation of TheForce.Trade’s smart contracts, this audit report
has been prepared to discover potential issues and vulnerabilities of their source code.
We outline in the report about our approach to evaluate the potential security risks.
Advice to further improve the quality of security or performance is also given in the
report.

About TheForce.Trade

The Force.Trade is a data aggregator specially designed for DeFi and NFT, providing
customisable smart contracts to simplify the investment process of DeFi and NFT for
users of all levels.

About Methodology

To evaluate the potential vulnerabilities or issues, we go through a checklist of
well-known smart contracts related security issues using automatic verification tools and
manual review. To discover potential logic weaknesses or project specific
implementations, we thoroughly discussed with the team to understand the business
model and reduce the risk of unknown vulnerabilities. For any discovered issue, we
might test it on our private network to reproduce the issue to prove our findings.

The checklist of items is show in following table:

Category Type ID Name Description

Coding Specification CS-01 ERC standards The contract is using ERC standards.

CS-02 Compiler Version The compiler version should be specified.

CS-03 Constructor
Mismatch

The constructor syntax is changed with Solidity versions. Need
extra attention to make the constructor function right.

CS-04 Return standard Following the ERC20 specification, the transfer and approve
functions should return a bool value, and a return value code
needs to be added.

@ Copyright 2021 Trustlook - All rights reserved

TheForce.Trade Smart Contract Audit Report

CS-05 Address(0)
validation

It is recommended to add the verification of
require(_to!=address(0)) to effectively avoid unnecessary loss
caused by user misuse or unknown errors.

CV-06 Unused Variable Unused variables should be removed.

CS-07 Untrusted Libraries The contract should avoid using untrusted libraries, or the
libraries need to be thoroughly audited too.

CS-08 Event Standard Follow the ERC20 specification and require the transfer and
approve functions to trigger the corresponding event.

CS-09 Safe Transfer Using transfer to send funds instead of send.

CS-10 Gas consumption Optimize the code for better gas consumption.

CS-11 Deprecated uses Avoid using deprecated functions.

Coding Security SE-01 Integer overflows Using safeMath library to avoid integer overflows.

SE-02 Reentrancy Avoid using calls to trade in smart contracts to avoid reentrancy
vulnerability.

SE-03 Transaction
Ordering
Dependence

Avoid transaction ordering dependence vulnerability.

SE-04 Tx.origin usage Avoid using tx.origin for authentication.

SE-05 Fake recharge The judgment of the balance and the transfer amount needs to
use the “require function”.

SE-06 Replay If the contract involves the demands for entrusted management,
attention should be paid to the non-reusability of verification to avoid
replay attacks.

SE-07 External call
checks

For external contracts, pull instead of push is preferred.

SE-08 Weak random The method of generating random numbers on smart contracts
requires more considerations.

Additional Security AS-01 Access control Well defined access control for functions.

AS-02 Authentication
management

The authentication management is well defined.

AS-03 Semantic
Consistency

Semantics are consistent.

AS-04 Functionality
checks

The functionality is well implemented.

AS-05 Business logic
review

The business model is implemented logically correct.

@ Copyright 2021 Trustlook - All rights reserved

TheForce.Trade Smart Contract Audit Report

The severity level the issues are described as following table:

Severity Description

Critical The issue will result in asset loss or data manipulations.

High The issue will seriously affect the correctness of the
business model.

Medium The issue is still important to fix but not practical to
exploit.

Low The issue is mostly related to outedate, unused code
snippets.

Informational This issue is mostly related to code style, informational
statements and is not mandatory to be fixed.

@ Copyright 2021 Trustlook - All rights reserved

TheForce.Trade Smart Contract Audit Report

Audit Results

Here are the audit results of the smart contracts.

Scope

Following files has been scanned by our internal audit tool and manually reviewed and tested by
our team:

File names Sha1

forcestrategy.sol 3166e1f8956d7fc8c6893fc77c01a8edbb030709

forcevault.sol b5f5c95a602bd19f34f29e7be46f9ada9fdc4c36

cakevault.sol 7896611109686728493402aa2d4442ebba3a5125

cakestrategy.sol cf3e9d55a1dcb52494c7810c2863bf7aae1ad2e5

cakeLPstrategy.sol 4195afc1f1bb88c862ab20e0c8495756e1a3fc34

cakeLPvault.sol 97dcc48a9d217da46dc4fe0f92d7ad0019061583

ForceTreasury.sol 66eeb4da4f8e48fcb8f6b1b85c4377fe9a5696b3

ForceToken.sol 1219079cbdfefc317d5d04eb698d5d6af7b7d1ff

ForceLPToken.sol 69e04b909a2e51efcd689207cea0697b7dadabb9

JediMaster.sol 17c6b9d0c5ebfb1a179e19bd2f4cd49dfcd499c0

Summary

@ Copyright 2021 Trustlook - All rights reserved

TheForce.Trade Smart Contract Audit Report

Issue ID Severity Location Type ID Status

TBL_SCA_001 High ForceToken.sol:873 AS-03 fixed

TBL_SCA_002 High ForceLPToken.sol:1106 AS-03 fixed

TBL_SCA_003 High JediMaster.sol:1203 AS-03 fixed

TBL_SCA_004 Info cakestrategy.sol:1194 AS-04 closed

TBL_SCA_005 Info cakeLPstrategy.sol:1216 AS-04 closed

TBL_SCA_006 Info forcestrategy.sol:1188 AS-04 closed

TBL_SCA_007 Info cakestrategy.sol:1238 SE-04 closed

TBL_SCA_008 Info cakeLPstrategy.sol:1266 SE-04 closed

TBL_SCA_009 Info forcestrategy.sol:1232 SE-04 closed

TBL_SCA_010 Info cakestrategy.sol:1253 AS-04 fixed

TBL_SCA_011 Info cakeLPstrategy.sol:1283 AS-04 fixed

TBL_SCA_012 Info forcestrategy.sol:1247 AS-04 fixed

TBL_SCA_013 Info cakestrategy.sol:1287 CS-10 fixed

TBL_SCA_014 Info cakeLPstrategy.sol:1348 CS-10 fixed

TBL_SCA_015 Info forcestrategy.sol:1277 CS-10 fixed

@ Copyright 2021 Trustlook - All rights reserved

TheForce.Trade Smart Contract Audit Report

Details

• ID: TBL_SCA-001 - TBL_SCA-003

• Severity: High

• Type: AS-03 (Semantic Consistency)

• Description:

During the implementation of function burn(), the delegates are supposed to be
decreased from the delegator. However, the logic is mistakenly to still increase the delegate as
the mint() function.

We recommend to change the line in burn() to be as follows:

“_moveDelegates(_delegates[_from], address(0), _amount);”

• Remediation:

The issue has been fixed.

@ Copyright 2021 Trustlook - All rights reserved

TheForce.Trade Smart Contract Audit Report

• ID: TBL_SCA-004 - TBL_SCA-006

• Severity: Informational

• Type: AS-04 (Functionality checks)

• Description:
The functions call safeApprove with uint(-1), which makes the target address have the

right to transfer an unlimited amount of balance. Though the target addresses are the
administrative contract addresses.

We recommend only use the necessary amount for the safeApprove() in the later
deposit() functions.

• Remediation:

TheForce.Trade understands the risk and keeps the contract as is.

@ Copyright 2021 Trustlook - All rights reserved

TheForce.Trade Smart Contract Audit Report

• ID: TBL_SCA-007 - TBL_SCA-009

• Severity: Informational

• Type: SE-04 (tx.origin usage)

• Description:
Theoretically, if the contract owner calls a malicious contract and results in calling the

affected withdraw() functions. It will bypass the validation of the ownership. The potential risk
should be avoided given the fact that the contacts are under control of TheForce.Trade.

We just advise to avoid using tx.origin to any form of authentication if possible.

• Remediation:

TheForce.Trade team understands the risk and it is controllable by avoiding calling
untrusted contracts.

@ Copyright 2021 Trustlook - All rights reserved

TheForce.Trade Smart Contract Audit Report

• ID: TBL_SCA-010 - TBL_SCA-012

• Severity: Informational

• Type: AS-04 (Functionality checks)

• Description:
1. isContract function can not guarantee the caller is a non-contract user, since the

constructor of a contract can also make EXTCODESIZE returns 0.
2. The information shown in line “!contract” is misleading the meaning of the code.

For 1. We just inform the project to be aware of this situation.
For 2. We recommend updating the information as “contract”.

• Remediation:

TheForce.Trade understands the situation of issue1. Issue 2 was fixed with better
readable words.

@ Copyright 2021 Trustlook - All rights reserved

TheForce.Trade Smart Contract Audit Report

• ID: TBL_SCA-013 - TBL_SCA-015

• Severity: Informational

• Type: CS-10 (Gas consumption)

• Description:
Function balanceOf() is not called by any of the functions inside the contract.

We recommend using external instead of public for lower gas cost.

• Remediation:

The issue was fixed.

@ Copyright 2021 Trustlook - All rights reserved

