
Smart Contract Audit Report
for

ForceNFTMarket

Version 1.0

Trustlook Blockchain Labs

Email: bd@trustlook.com

Project Overview

Project Name ForceNFTMarket

Contract codebase N/A

Platform BSC

Language Solidity

Submission Time 2021.06.07

Report Overview

Report ID TBL_20210608_00

Version v1.0

Reviewer Trustlook Blockchain Labs

Starting Time 2021.06.07

Finished Time 2021.06.09

@ Copyright 2021 Trustlook - All rights reserved

Disclaimer

Trustlook audit reports do not provide any warranties or guarantees on the vulnerability
free nature of the given smart contracts, nor do they provide any indication of legal
compliance. Trustlook audit process is aiming to reduce the high level risks possibly
implemented in the smart contracts before the issuance of audit reports. Trustlook audit
reports can be used to improve the code quality of smart contracts and are not able to
detect any security issues of smart contracts that will occur in the future. Trustlook audit
reports should not be considered as financial investment advice.

@ Copyright 2021 Trustlook - All rights reserved

About Trustlook Blockchain Labs

Trustlook Blockchain Labs is a leading blockchain security team with a goal of security
and vulnerability research on current blockchain ecosystems by offering
industry-leading smart contracts auditing services. Please contact us for more
information at (https://www.trustlook.com/services/smart.html) or Email
(bd@trustlook.com)

Trustlook blockchain laboratory has established a complete system test environment
and methods.

Black-box Testing The tester has no knowledge of the system being
attacked. The goal is to simulate an external hacking or
cyber warfare attack.

White-box Testing Based on the level of the source code, test the control
flow, data flow, nodes, SDK etc. Try to find out the
vulnerabilities and bugs.

Gray-box Testing Use Trustlook customized script tools to do the security
testing of code modules, search for the defects if any
due to improper structure or improper usage of
applications.

@ Copyright 2021 Trustlook - All rights reserved

https://www.trustlook.com/services/smart.html
mailto:bd@trustlook.com

Introduction

By reviewing the implementation of ForceNFTMarket’s smart contracts, this audit report
has been prepared to discover potential issues and vulnerabilities of their source code.
We outline in the report about our approach to evaluate the potential security risks.
Advice to further improve the quality of security or performance is also given in the
report.

About TheForce

TheForce is a data aggregator specially designed for DeFi and NFT, providing
customisable smart contracts to simplify the investment process of DeFi and NFT for
users of all levels.

About Methodology

To evaluate the potential vulnerabilities or issues, we go through a checklist of
well-known smart contracts related security issues using automatic verification tools and
manual review. To discover potential logic weaknesses or project specific
implementations, we thoroughly discussed with the team to understand the business
model and reduce the risk of unknown vulnerabilities. For any discovered issue, we
might test it on our private network to reproduce the issue to prove our findings.

The checklist of items is show in following table:

Category Type ID Name Description

Coding Specification CS-01 ERC standards The contract is using ERC standards.

CS-02 Compiler Version The compiler version should be specified.

CS-03 Constructor
Mismatch

The constructor syntax is changed with Solidity versions. Need
extra attention to make the constructor function right.

CS-04 Return standard Following the ERC20 specification, the transfer and approve

@ Copyright 2021 Trustlook - All rights reserved

functions should return a bool value, and a return value code
needs to be added.

CS-05 Address(0)
validation

It is recommended to add the verification of
require(_to!=address(0)) to effectively avoid unnecessary loss
caused by user misuse or unknown errors.

CV-06 Unused Variable Unused variables should be removed.

CS-07 Untrusted Libraries The contract should avoid using untrusted libraries, or the
libraries need to be thoroughly audited too.

CS-08 Event Standard Define and use Event appropriately

CS-09 Safe Transfer Using transfer to send funds instead of send.

CS-10 Gas consumption Optimize the code for better gas consumption.

CS-11 Deprecated uses Avoid using deprecated functions.

CS-12 Sanity Checks Sanity checks when setting key parameters in the system

Coding Security SE-01 Integer overflows Integer overflow or underflow issues.

SE-02 Reentrancy Avoid using calls to trade in smart contracts to avoid reentrancy
vulnerability.

SE-03 Transaction
Ordering
Dependence

Avoid transaction ordering dependence vulnerability.

SE-04 Tx.origin usage Avoid using tx.origin for authentication.

SE-05 Fake recharge The judgment of the balance and the transfer amount needs to
use the “require function”.

SE-06 Replay If the contract involves the demands for entrusted management,
attention should be paid to the non-reusability of verification to avoid
replay attacks.

SE-07 External call
checks

For external contracts, pull instead of push is preferred.

SE-08 Weak random The method of generating random numbers on smart contracts
requires more considerations.

Additional Security AS-01 Access control Well defined access control for functions.

AS-02 Authentication
management

The authentication management is well defined.

AS-03 Semantic
Consistency

Semantics are consistent.

AS-04 Functionality
checks

The functionality is well implemented.

@ Copyright 2021 Trustlook - All rights reserved

AS-05 Business logic
review

The business model logic is implemented correctly.

The severity level the issues are described as following table:

Severity Description

Critical The issue will result in asset loss or data manipulations.

High The issue will seriously affect the correctness of the
business model.

Medium The issue is still important to fix but not practical to
exploit.

Low The issue is mostly related to outedate, unused code
snippets.

Informational This issue is mostly related to code style, informational
statements and is not mandatory to be fixed.

@ Copyright 2021 Trustlook - All rights reserved

Audit Results

Here are the audit results of the smart contracts.

Scope

Following files has been scanned by our internal audit tool and manually reviewed and tested by
our team:

File names Sha1

ForceNFTMarket.sol 4108387642508c2e11013c4bb29326ff96237cbd

Summary

Issue ID Severity Location Type ID Status

TBL_SCA_001 Info ForceNFTMarket.sol:167 CS-10 closed

TBL_SCA_002 Info ForceNFTMarket.sol:89 CS-12 closed

TBL_SCA_003 Info ForceNFTMarket.sol:19 CS-08 closed

@ Copyright 2021 Trustlook - All rights reserved

Details

• ID: TBL_SCA-001

• Severity: Informational

• Type: CS-10 (Gas consumption)

• Description:

The “out of stock” validation can be put in the internal function getAvailableNftIds(). In
line 220:

if (_availableNftIds.length == numNfts_) {
selectedNftIds = _availableNftIds;

} else {
selectedNftIds = new uint[](numAvailableNfts);
for (uint i = 0; i < selectedNftIds.length; i++) {

selectedNftIds[i] = _availableNftIds[i];
}
selectedNftIds = _availableNftIds;

}

The operations in the “else” block are not needed since the later “out of stock” assertion in
function buy() will be triggered. Also the lines between 161-165 are not needed if an assertion
will be triggered later. So this validation can be moved much earlier to save gas consumption.

• Remediation:

The dev team has updated the contract in the updated version with SHA1 value
“48cca2a439176958558a6092f66725858feffd90”

@ Copyright 2021 Trustlook - All rights reserved

• ID: TBL_SCA-002

• Severity: Informational

• Type: CS-12 (Sanity Checks)

• Description:

For key parameters in the system, it is recommended to add some sanity checks on
update.

It is recommended to validate parameter nftPrice_ to be a non-zero value before the
assignment.

• Remediation:

The dev team has updated the contract in the updated version with SHA1 value
“48cca2a439176958558a6092f66725858feffd90”

@ Copyright 2021 Trustlook - All rights reserved

• ID: TBL_SCA-003

• Severity: Informational

• Type: CS-08 (Event Standard)

• Description:

When defining an Event with address parameters, it is recommended to add indexed
keywords for them for better query operations.

We advise to update these Events as following:

event NFTDeposit(address indexed _who, address indexed _tokenAddress, uint _tokenId, uint
_grade, uint nftId);

event NFTWithdraw(address indexed _who, address indexed _tokenAddress, uint _tokenId, uint
_grade, uint nftId);

event SelectedNFTs(address indexed _who, uint[]);
event BuyingBox(address indexed _who, uint boxSize);
event OutOfStock(address indexed _who, uint _requestedNum, uint _stockNum);

• Remediation:

The dev team has updated the contract in the updated version with SHA1 value
“48cca2a439176958558a6092f66725858feffd90”

@ Copyright 2021 Trustlook - All rights reserved

